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Reformulation of liquid perturbation theory for low temperatures
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A perturbation strategy is proposed which allows liquid perturbation methodology to be applied to extremely
low temperature situations for which the available liquid integral equation theory and traditional thermody-
namic perturbation theory fail. The possibility of avoiding the low temperature problem of the thermodynamic
perturbation theory not only is of relevance to the investigation of complex fluids, but also may be useful for
reformulation of other liquid theories to achieve higher accuracy and avoid the respective low temperature

problems.
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I. INTRODUCTION

Two typical theoretical approaches for calculation of
properties of liquid matter are Ornstein-Zernike (OZ) inte-
gral equation (IE) theory and thermodynamic perturbation
theory (TPT) [1]. Although the OZ IE theory has been made
more and more accurate in recent years [2], for extremely
short-ranged potentials where the vapor-liquid transition is
deeply buried inside the metastable region, the performance
of the OZ IE theory is less satisfactory, and the numerical
procedure may even fail to converge [3]. The TPT for a fluid
state is classified into two categories. One is the formulation
due to Zwanzig [4], in which the perturbation free energy is
expressed as a power series in the inverse temperature [
=1/kT (k is the Boltzmann constant and T the absolute tem-
perature) and an n-order term is involved with distribution
functions of order up to 2n. The higher-order terms of Zwan-
zig’s series hence progressively become more complicated
and numerically inaccessible. In 1967, Barker and Hender-
son [5] propose a macroscopic compressibility approxima-
tion (MCA) for the second-order term of Zwanzig’s formu-
lation. Since then the first- and second-order versions of
Zwanzig’s formulation have been generally accepted as trust-
worthy liquid theories.

The present author [6] proposed a second category of the
TPT in which the perturbation part is expressed as a power
series in a coupling parameter & In contrast to Zwanzig’s
formulation, the successively emerging n-order terms in
Zhou’s formulation involve only (n—1)th derivatives evalu-
ated at £=0 of a radial distribution function for an imaginary
fluid; hence Zhou could easily formulate the third- [6] and
fifth-order [7] versions of his TPT by numerically acquiring
the derivatives of interest. In Zwanzig’s formulation the ex-
pansion parameter is 3; obviously the first- and second-order
versions of Zwanzig’s formulation deteriorate as the tem-
perature decreases. In Zhou’s version, although the expan-
sion parameter £ is set to be a constant 1, the magnitude of
the expansion term is still proportional to B; hence Zhou’s
TPT version will also worsen as the temperature decreases.
In fact, for sufficiently low temperature, both perturbation
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expansions by Zwanzig and Zhou will not converge at all.
Unfortunately, the low temperature problem is also inherent
to the OZ IE theory, which also monotonically deteriorates as
the temperature drops. When the temperature is below the
critical temperature, the OZ IE theory even loses its physical
solution in the two-phase coexistence region. This undesir-
able property makes the OZ IE theory very inconvenient for
depicting the vapor-liquid coexistence curve. Furthermore,
the OZ IE theory possibly leads to incorrect and nonmatch-
ing branches of the binodal in the vicinity of the vapor-liquid
critical point. Another situation that can also occur in OZ IE
theory is the determination of the boundaries of phase stabil-
ity of density-dependent pair potentials [8]. For these poten-
tials the thermodynamic critical points are not associated
with diverging correlations, and thus the lack of a solution
curve of the OZ IE theory is no longer necessarily a signa-
ture of a phase transition. However, the TPT can tackle these
potentials in the same way exactly as it tackles density-
independent pair potentials [8].

In complex fluids the effective potential between mesos-
copic particles is usually very short ranged; the critical tem-
perature is correspondingly very low, and the temperature of
interest is therefore also very low. Considering the host of
difficulties plaguing the OZ IE theory at low temperatures
and the inability of the OZ IE theory to determine the bound-
aries of phase stability of density-dependent pair potentials,
it would obviously be useful to transform the divergent series
of the TPT at very low temperature into a convergent one or
to speed up the convergence rate of the series at higher tem-
peratures. This would not only be of striking theoretical sig-
nificance but would also greatly push the theoretical investi-
gation of problems from simple to complex fluids. The
present paper illustrates a strategy for realizing this aim in
Zhou’s formalism, but the same strategy can be implemented
in any version of the TPT.

II. THEORETICAL DESCRIPTION

The system of present interest is described by an interpar-
ticle potential u(r)=u(r)+upe(r) with u,(r) a reference
potential and u,,(r) the remaining perturbation part. The ex-
cess Helmholtz free energy per particle, f,,, for the system of
number density p is given in Zhou’s formulation [6,7] by
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Bf ex = Bf ex ref+218fperm (1a)
n=1

Bf per n=(1/n!)27p J dr P Butger(r) Gimag " (r.£.p.T)| 0.
(1b)

Here f. s is the reference fluid counterpart of f,,
gi(l'l‘];;) (r,€,p,T)|ey are the (n—1)th derivatives evaluated at
£=0 of gimag(r7§7paT) with respect to & gimag(ra &p.7)
is the radial distribution function (RDF) of a bulk imaginary
fluid with an imaginary pair potential  u(r;§)
=yef(r) +&upe(r).  Correspondingly, g?mag (r,é,p.7)| 0
=8imag(7,0,p,T) is the RDF at temperature 7" and density p
of the reference fluid dictated by the reference potential
uref(r )

In order to make the present coupling parameter expan-
sion calculation clear to readers, it is necessary to introduce
in  detail information on the calculation of
gi(r'gg (r.&,p,T)| &0 As in Refs. [6,7], calculation of the de-
rivatives is completed by a finite difference technique com-
bined with an interpolation multinomial.  First,
Zimag(7,€,p,T) is calculated at = +2A¢, =AE, and 0. Here
A¢ is a small increment ranging from 0.001 to 0.01. The OZ
IE combined with a bridge function approximation for the
imaginary pair potential u(r; &) is solved numerically with a
rapid and stable algorithm due to Labik, Malijevsky, and
Vonka [9]. The giyae(r,&,p,T) obtained at discrete values of
r and ¢ is employed to calculate gfﬁl;? (r.&.p,T)| o with n
=2,3 at the same discrete values of 7. In Refs. [6,7], the hard
sphere potential is chosen as the reference potential, and a
hard sphere bridge function approximation due to Malijevsky
and Labik [10] (ML) is employed for the imaginary fluid
dictated by u(r; &) with &= £2A&, = A¢ as well as by u(r; &)
with ¢é=0. The reason that one is allowed to employ the ML
hard sphere bridge function for the imaginary fluid dictated
by u(r; &) with é= =2A¢, + A€ is that the £ involved is very
small, so u(r; &) is actually very near to the chosen reference
potential, i.e., the hard sphere potential in the context of
Refs. [6,7]. If other reference potentials different from the
hard sphere potential are employed, then one has to formu-
late a new bridge function approximation for use. Because of
the very small value of §, the critical temperature T, . Of
the imaginary fluid dictated by u(r;¢) is actually extremely
low. As a result, the temperature of interest 7 is actually
always higher than T, .. In consequence, one does not
worry about running into the vapor-liquid two-phase region
of the imaginary fluid when the OZ IE theory is solved.

Obviously, the magnitude of each Bf;, , term depends on
the magnitude of both the reduced perturbation potential
Bitper(r) and 81(:1:1? (r,€.p,T)|g0. It has been shown [7] that
for the hard sphere reference potential and a target hard
sphere plus square well fluid the magnitudes of gfmag| &0 and
g?mag| =0 become unusually large as the reduced temperature
of interest T*=kT/e (e is the energy parameter) becomes
progressively lower. Therefore a key factor influencing the
convergence of the TPT is the magnitude of Bu,(r). In the
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current investigation based on the TPT, the hard sphere po-
tential is exclusively chosen as u,(r). From the mathemati-
cal point of view u,.¢(r) is not limited only to the hard sphere
potential; any model or real potential can be a candidate for
ufef_(lr)) as long as the . correspond.ing Sex ref and
imas (1, &.p,T)|g=o can be reliably and quickly obtained.

I% one diverts one part of the attractive ingredient in u(r)
into u¢(r), then the magnitude of the resultant reduced per-
turbation part [still denoted by Bu,(r)] will decrease con-
comitantly. Correspondingly, the resultant reduced reference
potential [still denoted by Bu..(r) and hereafter called the
nonhard sphere reference potential] will deviate from the
hard sphere reference potential. A long-tested modified hy-
pernetted chain (MHNC) approximation [11] will be applied
to the nonhard sphere reference fluid, an associated effective
hard sphere density will be determined by the so-called glo-
bal consistency constraint in which the equality of the pres-
sure, as calculated, respectively, from the virial and the fluc-
tuation methods, is imposed. For the hard sphere bridge
function which is needed as input to switch on the MHNC
approximation, we employ the ML hard sphere bridge func-
tion [ 10] for the domain of r> o (o is the hard sphere diam-
eter) and a recently proposed hard sphere bridge function due
to the present author [12] for the domain of r< . However,
the hard sphere bridge function for r < o should be shifted by
a density-dependent constant to make the hybrid hard sphere
bridge function continuous at r=o. Individual terms in this
hard sphere bridge function are given by simulation data-
fitting formula of different authors, i.e., of Groot, van der
Erden, and Faber [13], Balance and Speedy [14], and Verlet
and Weis [15]. This function is therefore denoted the GVEF-
BS-VW hard sphere bridge function. Upon solution of the
MHNC approximation for the nonhard sphere reference fluid
dictated by u.((r) over the whole density domain ranging
from zero density to notably high density, one can obtain
Jfex ref Dy integrating the resulting equation of state. As an
accompaniment of the solution of the MHNC approximation,
the effective hard sphere density is obtained as a function of
the bulk density for the nonhard sphere reference fluid. This
information will be used to calculate gin,e(r,&,p,T) at &
=+2A¢&, = A& Such a grafting procedure is permitted since
the £ involved is very small, so the imaginary fluid dictated
by u(r; &) is actually very near the nonhard sphere reference
fluid dictated by (). gimae(7>€,p,T) at = £2A¢, = Ain
combination with g;,..(r,€,p,T) at =0, which is just ob-
tained from the situation of the nonhard sphere reference
fluid, is employed to calculate gi(g;a;) (r.&.p,T)|o with n
=2,3 to switch on the present TPT calculation.

Several illustrating calculations will be performed on sev-
eral model potentials to confirm the validity of the above
idea and numerical procedure. The calculation touches on the
vapor-liquid coexistence curve, the location of the critical
point, and the equation of state. The sample potentials are a
hard core attractive Yukawa potential [16] uy(r,z), a hard
sphere square well potential [17] ugw(r,\), a core-softened
potential [18] ucs(r,b,c,d), and a Girifalco potential [19]
ug(r) for Cyy molecules. The potential details and the defi-
nition of the respective parameters can be found in Refs.
[16—-19] and are listed here for the sake of convenience:

rlo<1,

uy(r,2) = {w’ 5

—eoexpl-z(r-o)lallr, rlo>1,
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o, rlo<l,
ugw(r,\)=y—¢e, \=rloc>1, (3)
0, rlo> N\,

0, rlo<1,
-&0, b=rlco>1,
ucs(r,b,c,0) = e e=re>b (4)

0, rlo>c,

ol s )
uGlr) == s(s=1)3 - s(s+1)3 Tt

+ a2< ! l : ) (5)

+ _ =
s(s=1)°  s(s+1)° s

Here z, N, and b,c measure the range of the potentials uy,
ugw, and ucg, respectively; the parameter & in the potential
ucs measures the noncontinual degree of the core-softened
potential tail. For the Girifalco potential ug(r), s=r/d, «,
=N?A/12d° and a,=N?B/90d'%; N and d are the number
of carbon atoms and the diameter, respectively, of the
fullerene particles, A=32%10" ergcm® and B=55.77
X 10719 erg cm!'? are constants entering the Lennard-Jones
12-6 potential through which two carbon sites on different
spherical molecules are assumed to interact. For Cg,, d
=0.71 nm, the node of the potential u;(r), the minimum, and
its position are r,=0.959 nm, £=0.444X10"'? erg, and
F'min=1.005 nm, respectively.

The first three potentials have a hard sphere core whose
diameter is chosen as o, i.e., the hard sphere diameter of the
present hybrid hard sphere bridge function. The Girifalco
potential has only a very steep continuous core. The node of
ug(r) is chosen as the hard sphere diameter o.

Now, the remaining question is the separation of the po-
tential into the reference part and the perturbational part. As
all of the basic inputs for the present perturbation stategy are
calculated by the OZ IE approach, it is helpful to retrace the
relationship between the prediction accuracy of the OZ IE
approach and the location in the phase diagram of the state
point under consideration. For the supercritical state, it is
well known that the greater the distance from the critical
temperature T to the T of interest, the more accurate is the
OZ IE approach. For the subcritical state there exists a
vapor-liquid two-phase region where the OZ IE approach is
not physically and/or mathematically solvable at all; the
solvable region of the OZ IE approach is confined to the
vapor and liquid phase sides. As for the relationship between
T. and the potential parameters, it is known that (1) the
longer the attractive range, the higher is 7; (2) the higher the
energy parameter €, the higher is 7. As a result, the principle
for choice of the proper u,g(r) should be that the attractive
range or the energy parameter of u.(r) should be shorter or
smaller than those of the u(r), or any combination of those
two ways, such that the critical temperature 7, . of the non-
hard sphere reference fluid is sufficiently lower than the tem-
perature of interest. This helps to obtain f, ,.r accurately for
the nonhard sphere reference fluid within the whole density
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range by the OZ IE approach, and also gimm,(, &, p, T) for the
imaginary fluid. Thus one has to strike a balance between a
low magnitude of Su,(r) and alow T, . of the correspond-
ing nonhard sphere reference fluid. Generally speaking, the
basic and main ingredient of u,..¢(r) should be repulsive. As a
result, for the first three potentials above, the purely repul-
sive hard sphere core should be completely included into
u.¢(r). For the Girifalco potential, the part with r smaller
than the node r should be completely classified into u..q(r);
this is why the node r is chosen as the hard sphere diameter
o of the present hybrid hard sphere bridge function. As for
the part with r larger than o, a reasonable assignment pro-
portion is that 1/2.5 times the part is included into u,.(r) and
the remaining part into u,.(r). The assignment proportion
1/2.5 is our quantitative criterion for the specific partition of
the full interparticle interaction; the criterion is obtained by
trial and error with the help of the principle for choice of the
proper u,.(r) just discussed. The rationality of this criterion
will be demonstrated next for the cited sample potentials,
and we will explain its “universality” for different potential
functions. It is well known that, for most fluids, the ratio of
the critical temperature 7. to the triple point temperature 7,
generally lies between 2 and 5 [1]. The lower temperature
limit of interest is usually a little below 7,. Moreover, the
accuracy of the OZ IE approach depends on the relative de-
viation of the temperature of interest from the critical tem-
perature. As a result of the above facts, a gerneral 1/2.5
criterion suffices for the needs of the present perturbation
strategy. One also does not worry about whether this ap-
proach can be used in a predictive manner if an assessment
provided by computer simulation is unavailable, as the 1/2.5
criterion always suffices for different potential functions as
will be shown later. It should be pointed out that, if other
factors deviating from the 1/2.5 criterion are employed, the
resulting results will display small scattering around the re-
sults due to 1/2.5 criterion; this is actually inevitable. This
undesirable character originates in the following facts. One is
that the OZ IE approach possibly has different precision for
different potential functions tackled; the other is that differ-
ent assignment proportions actually change the contribution
assigned to each expansion term, so that if the order byond
which the coupling parameter expansion is truncated is fixed,
the final outcome is of course different. Luckily the final
outcome will not noticeably worsen if the assignment pro-
portion does not deviate from the 1/2.5 criterion too greatly.
A remarkable deviation from the 1/2.5 criterion only leads to
two kinds of consequence. One is that the convergence rate
will not speed up if the proportionality factor of 1/2.5 is
replaced by a too small value; obviously, if the substitution
value is zero, then the original TPT perturbation strategy is
restored. The other is that the final outcome will seriously
worsen or the numerical code will break down completely if
the proportionality factor of 1/2.5 is replaced by a too large
value. A proportionality factor larger than 1/2.5 means that
many of the attractive ingredients are absorbed into the ref-
erence fluid; this possibly leads to an increase of the critical
temperature of the reference fluid. When the reference fluid
critical temperature exceeds the temperature of interest, the
breaking down of the numerical code mentioned above will
occur; if the reference fluid critical temperature is raised but
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FIG. 1. Vapor-liquid coexistence curves of the core-softened fluid at two parameter combinations. The molecular dynamics (MD) results

are from Ref. [18].

is still below the temperature of interest, then the final results
also will worsen as the input information supplied by solving
the OZ IE theory becomes more and more inaccurate.

A comparison between different theoretical approaches
and computer simulation is presented for the coexistence
curves of the core-softened fluid in Fig. 1, the attractive
Yukawa fluid in Fig. 2, the square well fluid in Fig. 3, and the
Girifalco fluid in Fig. 4; and the critical parameters of the
attractive Yukawa and square well fluids, respectively, are
given in Tables I and II. Throughout the present paper, the
reduced bulk density p* is defined as po”. In Fig. 4 the
corresponding pressure P and chemical potential w are also
presented. We have used the superscripts HS-ref and new-ref
to denote the TPT results based on the hard sphere and non-
hard sphere potential as u,.¢(r), respectively. The correspond-
ing nonhard sphere reference potentials are shown in the fig-
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ures or captions of the figures. One conclusion emerging
from the comparison is that for the intermediate potential
range the present third-order TPT"*™' is on average more
accurate than the self-consistent Ornstein-Zernike (SCOZA),
heirarchical reference theory (HRT), MHNC approximation,
third-order TPTHS ™ and even fifth-order TPTHS ™ etc. (the
third-order TPTHS ™! is always more accurate than the tradi-
tional second-order MCA TPT [6]). What is particularly in-
spiring is that the TPT based on the nonhard sphere pertur-
bation strategy achieves, even at third order, gives
quantitatively very accurate predictions for the critical point
location of extremely short-ranged Yukawa and square well
potentials for which the HRT is numerically inaccessible and
the SCOZA is only qualitatively or also numerically inacces-
sible. It should be pointed out that the traditional second-
order MCA TPT completely fails to predict even the exis-
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FIG. 2. Vapor-liquid coexistence curves of the attractive Yukawa fluid at two values of the inverse range parameter z. Solid lines are for
results from SCOZA,; triangles, HRT; full circles, generalized mean spherical approximation (GMSA); open circles, MHNC; dashed lines the
present third-order TPT""""; horizontal bars, Gibbs-ensemble MC results of Ref. [20]. All of the OZ IE results are reproduced from Ref.

[16].
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FIG. 3. Vapor-liquid coexistence for square well fluid. Points are
the simulation data from Refs. [21-23], respectively, for squares,
triangles, and diamonds. Solid lines are the results from the third-
order TPTHS ™ dotted lines the fifth-order TPTHS ™t short-dashed
lines the SCOZA reproduced from [17], and dashed lines the
present 3rd-order TPT Wl

tence of the critical point of the latter potential. Except for
the situation in Fig. 2, the nonhard sphere reference poten-
tials for the four sample potentials are specified based on the
above 1/2.5 criterion; the displayed superiority of the
present predictive ability over other existing liquid state
theories fully indicates the universality, rationality, and ser-
viceability of the 1/2.5 criterion. To indicate that the 1/2.5
criterion is not the only one, the Fig. 2 case employs other
partition methods. It is shown that the particular partition
method that originates from the “any combinations of the
two ways” suggested above also leads to very satisfatory
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TABLE I. Comparison of the critical temperatures and densities
for attractive Yukawa fluid of two inverse range parameter values
among two versions [3(b)] of the SCOZA, third-order TPT%"f,
and fifth-TPTVl with u,=uy/2.5.

z T: pj Method

25 0.2353 MC (Ref. [26])
0.18706 0.307 SCOZA (z;=2)
0.15829 0.170 SCOZA (z,=165.8)
0.23802 0.42113 Third-order TPT %7l
0.2287 0.3105 Fifth-order TPT"ew-ref

100 0.1538 MC (Ref. [26])
0.06059 0.07 SCOZA, z25=z2
0.17427 0.47126 Third-order TPT"¢%-Tef
0.1599 0.28452 Fifth-order TPT"eW-ref

predictions. However, we still suggest the 1/2.5 criterion to
be employed for general cases as the 1/2.5 criterion’s uni-
versality has reasonable foundation, as explained above.
From Table I one concludes that the fifth-order version of
the present nonhard sphere perturbation strategy does not
always overmatch the third-order version. It is well known
that the critical densities of the hard core attractive Yukawa
(HCAY) fluid rise along with increase of the z value; the
critical density for z=7 is known to be 0.50 [20]. As a result,
the critical densities with z=25 and 100 certainly exceed
0.50. Therefore, the fifth-order version always underesti-
mates the critical densities far more seriously than the third-
order version does. As for the critical temperature, between
the two situations listed in Table I, one is more favorable to
the third-order and the other to the fifth-order version. There-
fore, the third-order version is actually superior on average to
the fifth-order version. Unlike the original TPT, which em-
ploys the hard sphere potential as reference potential and as a
result the analytical ML hard sphere bridge function [10] for
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g
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FIG. 4. Girifalco fluid thermodynamic properties. In panels for P and Bu, the dashed and solid lines are respectively for SCOZA and
MHNC results, the short-dashed lines the present third-order TPT"V"f and the symbols the MC results [24]. All curves are displayed from
top to bottom in order of decreasing temperature. In panel for vapor-liquid coexistence, open circles are for the MHNC results, solid line the
SCOZA, full circles the MC results [25], pluses the MHNC under a local consistency constraint, dashed line the present third-order
TPT"%"f_ All of the OZ IE results are reproduced from Ref. [19]. u,((r)=ug(7) for r<o and u,(r)=ug(r)/2.5 for r>o.
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TABLE II. Critical point parameters for the square well fluid for
width \, resulting from simulations [27] (first line) and third-order
TPT™" ™ (second line) with u,e=ugw/2.5.

\ r .
0.005 0.2007 0.542
0.21387 0.55672
0.01 0.2328 0.540
0.24021 0.49533
0.02 0.2769 0.538
0.27646 0.44523
0.03 0.3106 0.530
0.30467 0.42656
0.04 0.3398 0.522
0.32981 0.41545
0.05 0.3658 0.513
0.35262 0.40012

supplying RDF information to be used in calculation of
gi(:;;;) (r,€,p.T)|0o, the present TPT employs a nonhard
sphere potential as the reference potential and, consequently,
the bridge function for the nonhard sphere reference potential
has to be determined by a thermodynamically consistent con-
dition in the framework of the MHNC approximation. The
unavoidable and small error introduced for the effective hard
sphere densities may lead to small and irregular errors in the
RDF information. After a numerical differential procedure,
these errors will inevitably be propagated into
gi(:;;;) (r,&,p,T)| 0. Furthermore, the propagation of the er-
ror will be strengthened enormously along with increase of
the differential order. As a result, the excess Helmholtz free
energy from the fifth-order version may be vested with more
instability than that from the third-order version. In fact, we
have observed numerical instability associated with the fifth-
order version at very low temperatures; thus high order nu-
merical differentiation on the excess Helmholtz free energy
leads to results which vibrate irregularly to a small extent as
a function of the bulk density. Consequently, from the view
point of numerical stability, the third-order version is also
suggested for general use instead of the fifth-order version.
Although the second-order version is numerically stable
enough, this is no advantage over the third-order version as
the third-order truncation is certainly more reliable than the
second-order truncation.

It is possibly helpful to give a brief discussion about the
computing time needed by taking the original and the present
third-order versions as examples. For the original third-order
version, the computing time for a state point is mainly in-
vested in solving the OZ IE theory free of adjustable param-
eter five times, calculating gi([';;fl;) (r,&p, 7| g0 With n=2,3,
and calculating the integrals for each expansion term. If one
calculates f., over a reduced density domain ranging from
0.005 to 1.005 with a uniform density increment of 0.02, it is
shown that the original third-order version will take 47 s on
a personal computer. Compared with the original third-order
version, the additional computation time of the present third-
order version is invested in solving the MHNC approxima-
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tion. If one uses the gold search method to locate the solution
of the MHNC approximation, this corresponds to solving the
OZ IE theory free of adjustable parameters 15 times. As a
result, the computing time for the present third-order version
is four times smaller than that of the original third-order
version. To calculate the phase behavior, one needs f,, over a
wide temperature and density range. Calculation over the
density domain is described above; for the temperature
range, it is helpful to give a brief discussion. Assuming one
needs to calculate for a temperature domain ranging from
T#=0.3 to 100, it is not necessary to use a uniform tempera-
ture increment. At the temperature lower limit, the tempera-
ture increment has to be sufficiently small, such as 0.005; but
at the temperature upper limit, the temperature increment can
be relaxed to be as large as 5 or even 10. In the intermediate
region, the temperature increment can be varied between
0.005 and 5. In summary, one does not need to worry about
the possibility that the present numerical implementation of
the coupling parameter expansion causes one to face an ex-
cessive numerical effort.

III. CONCLUSION

The TPT goes back to van der Waals [28]; it is based on
the idea that the molecular structure of dense fluids and sol-
ids is essentially determined by a short-ranged repulsive in-
gredient of the underlying potential, and that a smoothly
varying long-ranged attractive ingredient can be considered
as a perturbation to the former. The present paper points out
that, even when the reference systems are somewhat en-
croached on by some attractive ingredient, the perturbation
picture is still valid. Considering that the perturbation strat-
egy underlies a large category of liquid theories including
OZ 1E theory [1] and classical density functional theory [29]
as well as the TPT [1], the present success in the framework
of fluid TPT promises emergence of a different research di-
rection for reformulation of liquid theories to achieve higher
accuracy and overcome the low temperature problem. Spe-
cifically speaking, the present TPT based on the strategy of
perturbation around a nonhard sphere reference system not
only provides a way out of the low temperature problem of
traditional TPT, and compares favorably with the most accu-
rate OZ IE theories, but also allows a unified treatment of
different potential functions whether the repulsive part of the
potential functions is a discontinuous hard sphere repulsion
or a very steep continuous repulsion. In particular, the third-
and fifth-order TPT"*%™f are presently the only reliable the-
oretical approaches for the extremely short-ranged potentials
popular in complex fluids.
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APPENDIX

Is Zhou’s coupling parameter expansion actually equal
to Zwanzig’s high temperature series expansion (HTSE)?
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According to the present terminology, the HTSE due to
Zwanzig [4] is written as

W, n—
Fex Zwanzig = L'ex ret E ;(_ ﬂ) L (A1)
n=1 "%

Here the subscript “Zwanzig” of F, stands for the result due
to Zwanzig, Fo,=Nfe and Fg, t=Nfex o are the whole ex-
cess Helmholtz free energy of the actual system and the ref-
erence system, and N is the number of particles in volume V
occupied by the system under consideration. As implied in
the text, both the actual and reference systems have the same
number of particles but different interparticle potentials. The
general formula for w, is derived [4] as follows:

w=j! 3 (D (Z -] L'(“;_'%)
n s=1 Ts+ .

s

Ssng=j

(A2)
The first four cases are, respectively,

w) = <a>0,
Wy = (a2>0 - (CY)(%,
w3 = (a3)0 - 3<012>0<01>0 + 2<0(>(3),

wy = () — HaPy(@)y — 3(a®)E + 12{(aP)( @)l — 6(a);.

(A3)
Here a=3,ue(r;;), (-+)o stands for the average of the
physical quantity --- performed over the unperturbed en-
semble.

It is easily shown [4] that w; can be expressed as

w; =2N7p f rzuper(r)gref(r)dr- (A4)
Here g,.¢(r) is the RDF of the reference fluid.

The present coupling parameter expansion denoted by Eq.
(1) can be reformulated to have a form similar to the HTSE
as follows:
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o

Ya

Fex zhou=Fex ref + E )l (- B)”_la (A5a)
n=1 "¢
1 2 (n-1)
Yn= (_ B)n_l 2N7Tp drr uper(r) gimag (V, g’ P T)|§:0'
(A5b)

Corrspondingly, the subscript “Zhou” of F,, stands for the
result due to Zhou [6,7]. So far all of the above derivation
and the corresponding Eqs. (A1)—(A5) are exact; no approxi-
mation has been introduced. Furthermore, one only has to
know whether the present v, is exactly equal to Zwanzig’s
w, in order to judge whether the two sets of expansions are
actually equal.

To help to disclose the distinction between the coupling
parameter expansion and the HTSE, one may as well con-
sider the situation of the hard sphere reference potential. Ob-
viously the two kinds of expansion have identical zeroth
terms. Next, let us first inspect y; and ;. Equation (A5b)
shows that y;=2Nmp [ dr r*upe(r) gimae(r,0,p,T). Consider-
ing that u(r;0)=u(r), therefore gine(r,0,p,T)=gf(r). As
a result, one concludes that y;=w;. Second, we consider v,
and w, with n=2. Equation (A2) shows that w, with n=1 is
concerned only with the reference fluid ensemble average of
o. Now the reference fluid is the hard sphere fluid, which is
independent of temperature, and a=3,;_ju,(r;;) is also inde-
pendent of temperature. Hence one concludes that w, with
n=1 is also independent of the temperature. In fact, Eq.
(A4) makes clear the temperature independence of w,. It is
known that the famous MCA approximation [5] for w, also
shows temperature independence. On the contrary, one
knows that giy,e(r,&,p,T) with £#0 depends on the tem-
perature. As a result, gi(r’;;lg) (r,&,p.T)|=o with n=2 also de-
pends on the temperature, which can easily be detected from
the calculation proedure detailed in the text. In fact, the
sample calculation displayed in Ref. [7] also discloses the
temperature dependence. The temperature dependence of
gfl';;g) (r,§,p,T)|§:0 with n=2 is evidently nonlinear; hence
the integral appearing in Eq. (A5b) is also nonlinear. As a
result, the temperature dependence of the integral is not
eliminated by simply being divided by a factor (-3)""!. To
conclude, the inequality w,# 7y, with n=2 is proven, and
thus the present coupling parameter expansion is not equiva-
lent to the HTSE.
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